Exam. Code : 206601 Subject Code : 4650

M.Sc. Bio-Informatics 1st Semester BASIC BIOSTATISTICS

Paper-BI-513

Time Allowed—Three Hours] [Maximum Marks—75

Note :— Candidates are to attempt FIVE questions, ONE from each Section. Fifth question may be attempted from any Section. All questions carry equal marks.

SECTION-A

- (a) Define frequency, frequency density, cumulative frequency, class limits, class boundaries, primary and secondary data.
 - (b) Exhibit the data in the following table by suitable diagram :

	Year	Total Area	Total Yield
		(in 1000 hectares)	(in 1000 tones)
	1965–66	115103	72347
	1966–67	115302	74231
	1967–68	121421	95952
	1968–69	120430	94913
	1969–70	123570	99501
2448(211)	9)/HH-13033	1	(Contd

Food production in India : Area and Yield

www.a2zpapers.com www.a2zpapers.com d free old Question papers gndu, ptu hp board, punja

- 2. (a) Describe scatter diagram. How is it helpful in judging the type of correlation ?
 - (b) What do you mean by quartiles ? Explain the use of it for measuring the dispersion. Why standard deviation is considered as best measures of dispersion ?

SECTION-B

- 3. (a) Define conditional probability. If A and B are two events with P(A) = 0.6, P(A ∩ B) = 0.3 and P(B) = 0.5. Find the values of P(A/B) and P(A/B).
 - (b) State and prove Baye's Theorem.
 - (c) Four cards are drawn at random from a pack of 52 cards. Find the probability that two are black and two are red.
- 4. (a) State and prove addition law of probability.
 - (b) A and B are two students of Statistics and their chances of solving a problem in Statistics correctly

are $\frac{1}{6}$ and $\frac{1}{8}$ respectively. If the probability of

their making a common error is $\frac{1}{525}$ and they obtain the same answer, find the probability that their answer is correct.

2448(2119)/HH-13033

2

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjak

SECTION—C

- 5. (a) Define cumulative distribution function of a random variable and state its important properties.
 - (b) Let X has the probability density function :

$$f(x) = \begin{cases} x , 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0 , \text{ otherwise} \end{cases}$$

Determine cumulative distribution function. Also find $P\left[\frac{1}{3} < x < \frac{4}{3}\right]$.

- 6. (a) Define Binomial distribution and find its mean and variance.
 - (b) Show that Poisson distribution is the limiting form of binomial distribution under certain conditions. Also show that mean and variance of Poisson distribution are equal.

SECTION-D

7. (a) Define line of regression. Why we have two regression lines for the case of bivariate distribution ? Explain the utility of the regression of y on x.

2448(2119)/HH-13033 3 (Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjak

(b) Given that X = 4Y + 5 and Y = kX + 4, are the lines of regression of X on Y and Y on X

respectively. Show that 0 < 4k < 1. If $k = \frac{1}{16}$, find the means of two variables and coefficient of correlation between them.

- 8. (a) Explain t-test for difference of means.
 - (b) Explain F-test for equality of population variance.Applying this test, show that the following samples come from the same normal population :

Sample	Size	Sample	Sum of Squares	
		Mean	of Deviation	
COMPC MOLES		TERMI ARTITICAL	from Mean	
1	10	15	90	
2	12	14	108	
And an of the second seco				

(Given that $F_{0.05}(9, 11) = 2.90$)

2448(2119)/HH-13033

4

100

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjak